
Variational AutoEncoders : Theory, implementation

and unanswered questions

Cédric Beaulac

December 17, 2019

1

1 Introduction

Latent variable models are known by statisticians as a family of models that increases the

expressiveness of the observed variable distribution. The best-known model within this family

is the Gaussian Mixture Model (GMM) where we assume the observed variables x comes from

one of the k Normal distributions that defines the mixture. Hidden Markov Models are another

example of well-known latent variable models.

The improved flexibility of such model is great, but comes at a price; it is way more com-

plicated to maximize the likelihood of such models. One reason GMMs are so popular is be-

cause we have been able to fit these models to observed data using algorithms such as the

Expectation-Maximization (EM) algorithm.

In this short document, we introduce the GMM paradigm as a simple model before introduc-

ing Variational AutoEncoders (VAE), which are even more flexible but harder to fit than GMMs.

Section 2 contains the GMM small introduction and an explains the relation between the max-

imization of the Evidence Lower Bound (ELBO) and the EM algorithm. In section3 we introduce

the theoretical motivation behind VAEs and discuss the current implementations of such mod-

els. We invite readers who want to go straight to the point to skip section 2.2. We also discuss

the differences between the theory and the implementation and we try to understand the ef-

fect of such differences. Finally, in the last section we introduce the supervised VAE paradigm

and once again discuss the differences between the theory and the implementation.

2 Gaussian Mixture Model

Let us introduce the Gaussian Mixture Model first and foremost. The main purpose of such

model is to allow for more complex observed-data distributions. The mixture component adds

an extra layer of flexibility which allows observations to belong to one of many Normal distri-

butions.

The simplest way to define such model is to consider z to be a latent discrete variable and

x to be the observed continuous variable. Simply speaking, from now on, we will always refer

to z as latent variable and we define latent variable as unobserved variable that have an effect

on the observed variable. We will refer to x as the set of observed or collected data.

2

For the Gaussian Mixture Model, z represents the component, i.e. if zi = k it means that

xi is distributed according to N (µk ,σk). For every possible component k we have a distinct

mean (µ) and standard deviation (σ), i.e. the parameters of the distribution of x depends on

the latent component such that :

p(x |z = k) = N (µk ,σk)

As we can see, the distribution for x is now a lot more complicated as we are only able to

pin down the conditional distribution given z :

p(x) =
∑
z

p(x , z)

=
∑
z

p(x |z)p(z)
(1)

In equation 1 we see why p(x) is more expressive but also why it is harder to fit. If we were

to attempt to compute the likelihood of an observed data set using the logarithm is not enough

to make the function easily differentiable :

p(x) =
n∏

i=1

p(xi)

=
n∏

i=1

K∑
j=1

p(xi |zi = j)p(zi = j)

⇒ ln p(x) =
n∑

i=1

ln
K∑

j=1

p(xi |zi = j)p(zi = j)

(2)

The solution utilized to fit this model is the Expectation-Maximization algorithm. We will

explain how this technique maximize the likelihood function later. Even though there exist

intuitive formulation of the EM algorithm for GMMs we introduce the ELBO-KL decomposition

of the likelihood in the next section. This might be a bit of overkill, but it will prove useful when

we introduce VAEs.

2.1 The ELBO-KL decomposition

Let us demonstrate this popular likelihood decomposition. Notice that these equations hold

for any distribution q(z) :

3

ln p(x) = ln (p(x , z)/p(z |x))

= ln (p(x , z)) − ln (p(z |x))

= ln (p(x , z)) − ln (p(z |x)) + ln q(z) − ln q(z)

= ln
(
p(x , z)

q(z)

)
− ln

(
p(z |x)
q(z)

)
⇒ Eq(z)[ln p(x |θ)] = Eq(z)

[
ln

(
p(x , z)

q(z)

)]
− Eq(z)

[
ln

(
p(z |x)
q(z)

)]
⇒ ln p(x |θ) = Eq(z)

[
ln

(
p(x |z)p(z)

q(z)

)]
− Eq(z)

[
ln

(
p(z |x)
q(z)

)]
= L(q , p) + KL(q | |p).

(3)

Notice that since the KL divergence is greater or equal than 0, then L(q) is a lower bound

for the likelihood. It is defined as the evidence lower bound (ELBO) or as the variational lower

bound. Almost all techniques for inference on graphical models are based upon the maximi-

sation of this lower bound.

The Jenson inequality is also an easy way to observe why the ELBO is a lower bound:

p(x) =

∫
p(x |z)p(z)dz

=

∫
p(x |z)p(z)q(z)

q(z)
dz

=

∫
p(x |z)p(z)

q(z)
q(z)dz

⇒ ln p(x) ≥
∫

ln p(x |z)p(z)
q(z)

q(z)dz

= Eq(z)

[
ln

(
p(x |z)p(z)

q(z)

)]
(4)

2.2 TheEMalgorithm : Maximizationof the variational lowerbound for tractable
posterior.

The Expectation-Maximization algorithm is an iterative procedure that slowly increases the

value of the variational lower bound with two distinct steps. To begin, we will explain the

key ideas and it how the algorithm intends to maximize the likelihood and then we will see

how this procedure leads to a maximization of the variational lower bound.

4

We’ve already discussed the issue of maximizing the likelihood of the observed data set in

models with latent variables. Remember that :

ln pθ(x) =
n∑

i=1

ln
K∑

j=1

pθ(xi |zi = j)pθ(zi = j)

and thus maximizing the likelihood is analytically impossible. This model contains (k −1)+
2k parameters. The k − 1 parameters for the categorical distribution of z , the k means µj and

the k variances σ2
j that correspond to the k normal components. Even though this is not a

perfect notation we refer to all of these parameters as θ.

For now, let’s assume that the complete data set contains both x and z, then the complete

log likelihood ln pθ(x, z) is straight forward to maximize. Since we only observed x, the only

information we have about z is through the posterior distribution of z pθ(z|x). Therefore we

cannot directly use the complete-data log likelihood ln pθ(x, z) and instead we will compute

the expectation of the complete log likelihood under the posterior distribution with the current

set of parameters:

Epθo (z |x)[ln pθ(x, z)] =
∑

z
pθo (z|x) ln pθ(x, z) = Q(θ, θo). (5)

Computing this expectation is the E step of the EM algorithm. Then, wemaximizeQ(θ, θo)this

expectation with respect to θ, the M step. Here, θo stands for old θ and is the set of parameters

under which we computed the posterior of the latent pθo (z|x). For a mixture of Gaussian, we
compute this expectation is a simple manner :

pθo (zn = k |xn) =
πkNθk (xn)∑K

j=1 πjNθk (xn)
= γ(zk) (6)

where πk = p(z = k). Then optimizing Q(θ, θo) is easy and leads to the following estimates

:

5

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnew =
1

Nk

N∑
n=1

γ(znk)(xn − µnewk)(xn − µnewk)T

πnew
k =

Nk

N

where Nk =
∑N

n=1 γ(znk).

Now we are going to use the ELBO-KL decomposition to demonstrate how this technique

succeed at maximizing the likelihood and we will motivate the need for other techniques.

In the previous section, we’ve demonstrated that L(qφ, pθ) is a lower bound for the log-

likelihood of the observed data ln pθ(x). The ELBO is function of the parameters θ of the

distribution pθ and of the parameters φ of a distribution over the latent variables qφ(z). Let’s

demonstrate how every both step of the EM algorithm increase L(qφ, pθ) in their own way. In

the E step, we maximize L(qφ, pθ) with respect toφ while in theM, we then maximize L(qφ, pθ)

with respect to θ.

The E step considers the effect of z through the posterior distribution pθ(z|x) under the cur-
rent set of parameters, and then compute the expectation of the complete log-likelihood under

that posterior distribution. We see that this step maximizes L(qφ, pθ) with respect to qφ(z) by

setting qφ(z) = pθ(z|x). Since L(qφ, pθ) = ln pθ(x)−KL(q | |p) setting qφ(z) = pθ(z|x)makes

the KL divergence vanish which effectively maximize L(qφ, pθ). This also highlights one of the

main assumptions necessary to use an EM algorithm, we need to be able to compute pθ(z|x).

In the followingM step, wemaximizeQ(θ, θo)with respect to the parameters θ. Let’s actually

see what happens when we substitute qφ(z) by pθo (z|x) in the lower bound :

6

L(qφ, pθ) =
∑

z
qφ(z) ln

(
pθ(x, z)
qφ(z)

)
⇒ L(pθo (z|x), θ) =

∑
z

pθo (z|x) ln
(
pθ(x, z)
pθo (z|x)

)
=

∑
z

pθo (z|x) ln pθ(x, z) −
∑
Z

pθo (z|x)) ln pθo (z|x))

= Q(θ, θo) + const.

Since theM stepmaximizesQ(θ, θo)with respect to θ is surely maximize the ELBO in parallel

since the two are equal up to a constant.

Assuming the EM algorithm is successful at fitting such latent variablemodel it is reasonable

to ask why would we need any other techniques to optimize the parameters in latent variable

models. The problem with EM is that it requires us to compute pθo (z|x) which may not be
feasible in some cases. The propose solution in those cases is to directly maximise the ELBO

in another way.

3 Variational AutoEncoders

VAEs [5, 6] are an attempt to create an evenmore flexible family of latent variable models. In the

GMM, we have a simple mapping from z to x θ : N k → R×R+, each component k has it’s own

set own set of parameters; if z = j then p(x |z) = N (µj ,σj). For our demonstration of VAEs,

we assume the distribution of x is still normal but so is z . Typically, we assume z ∼ N (0, 1).

Since z is now continuous, we could identify this model as a Gaussian mixture where we have

infinitely many components. Furthermore, to allow this, the parameters are now a continuous

function of the latent variable z ; θ = [µx ,σx] = fx (z), to use a short notation, we identify µx (z)

as the function that takes z as input and return the parameters µx associated with this value

and same for σx (z) or simply θ(z) : R → R ×R+. If θ is a continuous function, it ensures that

points that are alike (close to one another) in the latent space are also near in the observation

space.

We define z as the latent representation of the observation x or as its code. We define θ(z)

7

as the decoding function which takes in the code and return the parameters of the observed-

data distribution. The utilize the strength from the latest machine learning development, we

use a Neural Network (NN) function as decoding function. It has the benefit of allowing for a

maximum amount of flexibility but in turn makes the posterior of the latent p(z |x) intractable
and consequently the EM algorithm cannot be used.

3.1 Maximization of the ELBO

Because it is impossible to compute the posterior distribution of the latent p(z |x) we cannot
compute Epθ(z |x)[ln pθ(x, z)] and thus we must find another way to maximize the likelihood

function pθ(x). The proposed solution is to replace pθ(z |x) with an approximate distribution
qφ(z |x) and maximize the ELBO :

L(φ, θ) = Eqφ(z |x)
[
ln pθ(z) + ln pθ(x |z) − ln qφ(z |x)

]
Remember that the ELBO is a lower bound to the observed-data log-likelihood ln pθ(x).

We define qφ(z |x) as the encoding distribution. The effect of x on the encoding distribution
goes through the parameters φ. We define qφ to be a Normal distribution and once again we

explained the parameters φ as a function of x ; φ = [µz ,σz] = fz (x). Once again, this function

is set to be a NN that we will refer as φ(x) from now on.

Since we cannot directly compute, Eqφ(z |x)
[
ln pθ(z) + ln pθ(x |z) − ln qφ(z |x)

]
we will pro-

duce a Monte Carlo estimate of the ELBO. In other words, we draw from z from qφ(z |x) then
compute ln pθ(z) + ln pθ(x |z) − ln qφ(z |x). Then, we have to maximize this value with respect

to its parameters. As we are looking at conditional distributions, the parameters are functions

of the given variables, thus we will actually optimize the functions. Simply put, we optimize the

parameters of the NN functions θ(z),φ(x).

Here is a breakdown of the procedure :

1. Process observation x through the NNs φ to produce φ(x)

2. Sample z from qφ(x)(z |x)

3. Process latent sample z through the NNs θ to produce θ(z).

8

4. Compute ln pθ(x)(z) + ln pθ(z)(x |z) − ln qφ(z |x), the ELBO Monte Carlo estimate.

5. Maximize the ELBO with respect to the weights and biases of φ and σ

6. Repeat 1-5 until convergence.

3.2 Practical uses

3.2.1 Dimensionality Reduction

VAE is a unsupervised learning model like k-means clustering, GMM or Principal Component

Analysis (PCA). Just like these other techniques, dimensionality reduction is one reason to use

VAE. The code z is a of much lower dimension, and given the fitted encoding function φ and

decoding function θ we can easily encode large observations x into the parameters of their

lower-dimension representation z and also decode this representation to get the parameters

of the reconstructed observation distribution. We define it as a probabilistic dimensionality

reduction rather than a deterministic one.

Dimensionality reduction is very useful for storage purpose. Besides, the lower dimensional

representation can be used to group up together observations that are alike. Finally, it is quite

common to apply supervised learning techniques to the latent representation itself.

3.2.2 Generator

A VAE is considered a generative model. Indeed, since a distribution is assumed for the latent

variable z , z ∼ N (0, 1) it is possible to generate new observations using ancestral sampling :

1. Sample z from N (0, 1)

2. Process z through the NNs θ to get µx (z) and σx (z).

3. Sample x from N (µx (z),σx (z)).

3.3 Objective function

Now that we have established the theory and the algorithms we are ready to discuss the current

implementations of this model. Machine learning optimization commonly defines the objective

function as the function subject to the optimization. Then a gradient-based optimizer is used to

9

maximize or minimize this objective function. For example, one could define the mean squared

error (MSE) of a classifier h as the objective function: 1
n

∑n
i=1(h(xi) − yi)

2. Then we compute

the gradient of the objective function with respect to the parameters of h. Finally, we use

a gradient-based optimizer, for example stochastic gradient descent (SGD). Modern machine

learning based on NN functions relies on this strategy as we are able to compute the gradient

with respect to the parameters of NNs using the chain rule for derivatives.

Back in the VAE set up, we try to maximize the log-likelihood function but since it the like-

lihood function in impossible to compute we maximize the ELBO instead, a lower bound of

the log-likelihood function. Specifically, the objective function is a Monte Carlo sample of the

ELBO:

ln pθ(z) + ln pθ(x |z) − ln qφ(z |x).

At least that’s the theory behind most implementation. To discuss further the current suc-

cessful implementations, let us reorganize the terms in the ELBO:

L(φ, θ) = Eqφ(z |x)
[
ln pθ(z) + ln pθ(x |z) − ln qφ(z |x)

]
= Eqφ(z |x)

[
ln pθ(x |z) − (ln qφ(z |x) − ln pθ(z))

]
= Eqφ(z |x) [ln pθ(x |z)] − Eqφ(z |x)

[
ln qφ(z |x) − ln pθ(z)

]
= Eqφ(z |x) [ln pθ(x |z)]

Reconstruction error
− KL

(
qφ(z |x)|pθ(z)

)
Regularization term

(7)

It is common to perceive the ELBO with respect to these two terms. Actually we can see this

as a penalized optimization problem where we want to maximize the first term and where the

second term works as some kind regularization that prevents qφ(z |x) from drifting far away

from a N (0, 1).

In their implementation those two components are often modified to create better results,

but little is known about the induced model optimized with those modified objective function.

3.3.1 Implementation of the objective function

In this section we will introduce two inconsistencies between the theory and the successful

implementation of the VAE objective functions.

10

Let’s first discuss the reconstruction term of the objective function :

ln pθ(x |z) = ln
(

1√
2πσ(z)2

exp
(−(x − µ(z))2

2σ(z)2

))
= −1

2
ln

(
2πσ(z)2

)
− (x − µ(z))2

2σ(z)2

(8)

Most implementations we found online do not maximize the reconstruction term of equa-

tion 8. Instead the NN θ returns an output of the same size as x andminimize themean squared

error between x and the reconstructed x . This is equivalent to maximizing the log-likelihood

for a normal distribution with a fixed σ = 1 :

−1

2
ln (2π) − (x − µ(z))2

2
∝ −(x − µ(z))2

Research Question :

• Does this really produce a more useful model ?

• If yes, why ?

Based on empirical result, we assume that not optimizing pθ(x |z) with respect to σ(z), i.e.

fixing σ(z) = 1, produce better reconstructed images. Our assumption is that it is due to the

singularity problem that also affects GMM [1].

Briefly, suppose we have a GMM with 2 components and suppose that mean of component

1 µ1 equals one of the observed data points; µ1 = xj for some j . The contribution to the

likelihood function of that point becomes :

p(x1 |µ1,σ1) =
1

√
2π

1

σ1
.

As σ1 → 0 then p(x1 |µ1,σ1) → ∞ and thus having these singularities effectively maximize

the likelihood. We suspect that the presence of these singularities is the cause for the poor

generative performances of models where we optimize the reconstruction term with respect to

σ(z) instead of fixing σ(z) = 1.

Secondly, the β -VAE [4] implementation modifies the objective function the following way :

11

ln pθ(x |z) − β (ln qφ(z |x) − ln pθ(z)).

In other words, they add a parameter to increase or decrease the KL-divergence contribution

of the ELBO in the objective function. Increasing the β above 0 was shown to improve the

disentanglement of the latent representation [2] but it is not clear what is the resulting model.

With β , 1, we are not maximizing the lower bound of the log-likelihood anymore.

Research questions

• What distribution are we optimizing ?

• Why is this new distribution better ?

From a generative model perspective, making sure qφ(z |x) is close to pθ(z) is very helpful.

Since we learn the decoding distribution pθ(x |z) based on samples from qφ(z |x) the decoding

distribution will struggle if data generated from qφ(z |x) and from pθ(z) are vastly different.

3.4 Implementation : Ancestral sampling

We previously discussed how VAEs are often used as generative models. In that case, the fol-

lowing Ancestral Sampling scheme is used :

1. Sample z from N (0, 1)

2. Process z through the NN θ to get µx (z) and σx (z)

3. Sample x from N (µx (z),σx (z)),

or it should be. As a matter of fact in a desired to generate observations with high likelihood

most generative models based on VAEs output µx (z) instead of sampling from N (µx (z),σx (z)).

So in popular implementation the following generative technique is used :

1. Sample z from N (0, 1)

2. Process z through the NN θ to get µx (z) and σx (z)

3. Output µx (z).

12

This is not ancestral sampling and the consequences of such choice is unknown. More

importantly if we combine this generative scheme with the Reconstruction Term explained in

the previous section ((x − µx (z))
2) then we truly got rid of all the probabilistic components of

x . Indeed, the resulting model is totally deterministic in x given z and should no longer be

considered a latent variable model.

Research question

• What is this new generative process ?

• Did we achieve our original goal now that we went back to a fully deterministic model ?

3.5 Contribution of neural networks

In the work of Kingma [5, 6] that introduces VAEs, NNs are proposed for θ(z) and φ(x). This

decision is reasonable considering most of the recent progress in Machine Learning was drive

by the recent success of NNs.

NNs are continuous function, which ensures that observations that are nearby to one an-

other are projected to lower space values that are nearby to one another as well, which is an

important. Furthermore, NNs are considered universal continuous functions approximators.

More precisely, Csáji [3] claims in his thesis :

The universal approximation theorem claims that the standard multilayer feed-forward net-

works with a single hidden layer that contains finite number of hidden neurons, and with

arbitrary activation function are universal approximators in C (Rm).

It seems like NNs are an appropriate choice and we don’t see any implementation problems

in the current state of things.

3.6 Visualization of the different implementations

We used the MNIST data set to visualize how different implementation result into different

latent space representations, generative processes and reconstructions. We have used a su-

pervised VAE were labels were also given to the encoder and decoder. Therefore the ability to

produce the right digit should not be a concerned.

13

3.6.1 Probabilistic decoder against Deterministic decoder

It is difficult to approach all of these modification to the theory separately but we will do our

best. The first comparison we will illustrate the difference between a probabilistic decoder,

where both µ and σ are learned to one where only µ is fitted, in other words where we minimize

the reconstruction error. We used a β -VAE with a moderately large β , the selection of β will be

illustrated later in this section

The theoretical proposition for a latent variable model leads the following :

Figure 1: Latent representation for µ given the digit is four.

Based on this we can generate x from p(z) and process that through µx (z) and σx (z). Here

is what µ(z) looks like for 10 samples of z :

14

Figure 2: Samples of z from p(z) processed through the NN µx

But this is not the ancestral sampling process proposed for VAEs, as a matter of fact, the

images above are not samples from p(x |z) they are µx (z). If we sample from p(x |z) we get
images like these :

Figure 3: Samples from p(x |z)

Multiple things might explain why these images are horrible. For one, since pixels are drawn

independently they are not correlated with one another. Perhaps a fully parametrize covariance

structure for p(x |z) would fix this problem. Also since the domain of a Normal variable is

(−∞,∞) when we sample from N (µx (z),σx (z)) we have values higher than 1 and lower than

0 which do no belong in the original domain of those images.

We can also learn a different σ parameter for every individual pixels which leads to these

kinds of images :

Figure 4: Samples from p(x |z)

where what surround the picture is clear since there is little variance observed in these parts

but where the location of the digits is even more blurry since these pixels have high variance.

15

Outputing µ(z) does not produce pretty images because µ has high likelihood in a Normal

distribution but because output mu for every pixels create a perfectly correlated image in Dis-

tribution, the distribution for all pixel value being exactly 0.5. To Illusatrate this we sample z

from p(z) and we produced images by outputing 5 images for every z : (µx (z)−2σx (z), µx (z)−
σx (z), µx (z), µx (z) + σx (z), µx (z) + 2σx (z)) :

Figure 5: (µx (z) − 2σx (z), µx (z) − σx (z), µx (z), µx (z) + σx (z), µx (z) + 2σx (z))

Figure 6: (µx (z) − 2σx (z), µx (z) − σx (z), µx (z), µx (z) + σx (z), µx (z) + 2σx (z))

Let us compare these with a simpler model where we do not learn σx and where the images

generated are simply µx (z), in other words x = µx (z) is a deterministic given z .

16

Figure 7: Latent representation for µ given the digit is four.

Since we did not learn σ , we cannot draw from p(x |z) and automatically output µx (z) when

generating images, which results in :

Figure 8: Samples of z from p(z) processed through the NN µx

These images look good, but they were not generated from the proposed Ancestral Sampling

technique described in the literature and they are not the result of a latent variable model but

a single variable model (z) process through a NN. This new generative process resembles more

GAN than a latent variable model. Samples from that model do look better at eyesight but are

not the result of a successful implementation of the model proposed in the literature.

17

3.6.2 β -VAE

The next topic we would like to illustrate is the effect of β -VAEs. As we adjust β we can force

the encoder to produces encoded observation as close to the prior as possible but it directly

affect the expressivity of the generative process as illustrated below :

(a) Posterior distribution of the latent : p(z |x)
(b) Latent representation of µx (z) for the digit nine.

Figure 9: Small β

(a) Posterior distribution of the latent : p(z |x)
(b) Latent representation of µx (z) for the digit nine.

Figure 10: Medium β

18

(a) Posterior distribution of the latent : p(z |x)
(b) Latent representation of µx (z) for the digit nine.

Figure 11: Large β

When β is too small, the generative process can not work as illustrated in figure 9. Since

the posterior p(z |x) is extremely different from the prior p(z) this is a problem because we

use Monte Carlo estimates of the ELBO to train the model. Remember that we sample from

p(z |x) to do so and thus the encoder is solely trained on observations coming from p(z |x).

If p(z |x) is too different from p(z) most of the sample generate from p(z) will result in value

never observed by the decoder previously and will result in the fuzzy images observe in figure

9b.

On the other hand, if β gets too large then the algorithm puts too much pressure on making

p(z |x) Gaussian and not enough to recreate precise images. Instead p(x |z) is almost the same

regardless of z . Lucas & al. recently addressed the situation and defined posterior collapse

properly establishing the σ parameter as the real driving force for this issue. Setting small σ

parameters ensure the latent representation is thigh for µ.

19

3.6.3 Fixing σ

Figure 12: Latent representation for µ given the digit is four.

Figure 13: Samples from p(x |z)

Figure 14: Samples from p(x |z)

20

3.7 Overall Observation

It seems that σ is more meant to be a parameter meant to facilitate learning, i.e. map images

slightly different to a similar latent representation by allowing some observed variability given

similar latent representation rather than a parameter with a dedicated generative purpose.

It still it unclear if this added variability on observed variable is actually useful from a

generative perspective.

4 Probabilistic Principal Component Analysis

In section 2, we have introduced GMM as a simple latent variable model we can refer too and

compare newer models such as VAEs. GMM was considered a well-known technique and we

included in here to facilitate the explanation of VAEs motivation and structure.

In the section we discussed a bridging model that really stands between GMMs and VAEs

in terms of structure; Probabilistic Principal Component Analysis (pPCA) [8, 7]. Our goal is to

use pPCA to provide some intuition on the more complex VAE model. We also expect some

differences in their ability to fit data, the difference in the resulting fitted models is cause by

their theoretical difference and we hope that our understand of pPCA will help us shed some

light in the VAE theory and implementation.

pPCA is a continuous latent variable model similar to VAEs but where the NN functions are

replace with a simple linear function. Once again a prior distribution is assumed for the latent

and a resulting conditional distribution of observations :

z ∼ N (0, I)

x|z ∼ N (Wz + µ,σ2I)

To bring back notation used in the previous section, µx is actually a function of the latent

variable : µx (z) = Wz + µ. From a generative perspective we can perceive a D -dimensional

observed variable x being defined as a linear transformation of anM -dimensional latent vari-

able z plus an additional Gaussian noise :

21

x = Wz + µ + ε

where z is an M -dimensional standard Normal variable, µ is a D -dimensional vector of con-

stant and ε is a D -dimensional zero-mean Normal variable with covariance σ2I . This corre-

sponds to a linear-Gaussian model for which p(x) is computable and for which we can compute

likelihood and maximize it.

Nonetheless, since we have approached fitting GMM with the EM algorithm and later ex-

plained the parallel between EM and ELBO maximisation we will introduce the EM solutions for

pPCA but remember that an exact maximum likelihood solution also exists.

4.1 EM solution for pPCA

To begin, once again, let us compute the expectation of the complete log-likelihood :

E[lnp(x, z|µ,W,σ2)] = −
N∑

n=1

(
D

2
ln(2πσ2) +

1

2
Tr(E[znzT

n])

+
1

2σ2
| |xn − µ | |2 − 1

σ2
E[zn]

T WT(xn − µ)

+
1

2σ2
Tr(E[znzT

n]WtW)

) (9)

We set µ to its maximum-likelihood value µ = x̄ and the EM algorithm is strictly used to

determine the value for the two other set of parameters W and σ . The E-step consist of using
old parameters value to compute E[zn] and E[znzT

n] :

E[zn] = M−1WT(xn − �x)

E[znzT
n] = σ2M−1 + E[zn]E[zn]

T

where

M = WTW + σ2I

22

Thenwe replace these values in equation 9 andwe obtain themaximum likelihood solutions

forW and σ2 for the current iteration :

Wnew =

[
N∑

n=1

(xn − x̄)E[zn]
T

] [
N∑

n=1

E[znzT
n]

]
σ2
new =

1

ND

N∑
n=1

(
| |xn − µ | |2 − 2E[zn]

T WT
new(xn − �x)

+ Tr(E[znzT
n]WT

newWnew

)
5 Conclusion

The VAE model as define in the literature [5, 6] is built upon a rigorous theory and the described

model is both innovative and a big contribution to the fields of Machine Learning and Statistics.

It extends latent variable models to allow for more flexible functions between the latent and

the observations space and has empirically performed well on some problems.

But there seems to be a gap between the theory and popular implementations. It is not

clear if this gap is intended and if the effect of this gap and the resulting model have been

studied. In this small report, we have highlighted some of these differences and discussed

some potential research avenues.

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[2] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-

jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint

arXiv:1804.03599, 2018.

[3] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of Sciences, Etvs

Lornd University, Hungary, 24:48, 2001.

[4] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,

Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a

constrained variational framework. ICLR, 2(5):6, 2017.

23

[5] D. P Kingma and M. Welling. Auto-Encoding Variational Bayes. ArXiv e-prints, December 2013.

[6] Diederik P. Kingma. Variational Inference & Deep Learning : A New Synthesis. PhD thesis,

Universiteit van Armsterdam, 10 2017.

[7] Michael E Tipping and Christopher M Bishop. Mixtures of probabilistic principal component

analyzers. Neural computation, 11(2):443–482, 1999.

[8] Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

24

