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Abstract

In this article we propose a new decision tree algorithm. The proposed approach allows

the algorithm to interact with some predictors that are only de�ned in subspaces of the

predictor space. One way to utilize this new algorithm is to create or use a predictor to

keep track of missing values. This predictor can later be used to de�ne the subspace where

predictors with missing values are available for the data partitioning process. By doing so,

this new classi�cation tree can handle missing values for both modelling and prediction. The

algorithm is tested against simulated and real data. The result is a classi�cation procedure

that e�ciently handles missing values and produces results that are more accurate and more

interpretable than most common procedures.
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1 Introduction

Machine learning algorithms are used in many exciting real data applications, but may have

problems handling predictors with missing values. Many solutions have been proposed to deal

with observations that are missing completely at random (MCAR). Since this is a restrictive

assumption we propose a solution to missing values that uses the tree structure of Classi�cation

and Regression Trees (CART) to deal in an intuitive manner with observations that are missing

in patterns which are not completely at random.

Our proposed new tree construction procedure was inspired by a data set where the missing

pattern of one subset of predictors could be perfectly explained by another subset (see Section

4.1). A typical decision tree is an algorithm that partitions the predictor space based upon a

predictor value, splitting it into two subspaces and repeats this process recursively. Our proposed

algorithm is di�erent as it allows the researcher to impose a structure on the variables available

for the partitioning process. By doing so, we construct Branch-Exclusive Splits Trees (BEST).

When a predictor Xj contains missing values, we can use other predictors to identify the region

where the predictor Xj contains no missing value. Therefore we can use the proposed algorithm

to consider splitting on a predictor only when it contains no missing value based on previous

partitioning. BEST can be easily adapted to any splitting rule and any forest forming procedure

[4, 5, 10]. BEST also has other applications; it can be used by researchers that would like

to utilize some knowledge they have on the data generating distribution in order to guide the

algorithm in selecting a more accurate and more interpretable classi�er.

In this article we will brie�y discuss the classi�cation problem and its notation and we

will explain how classi�cation trees solve that problem. We will then do a quick review of

the missing values treatments that are currently being used. Afterwards, we will introduce the

proposed algorithm and some motivating examples before explaining in detail how the algorithm

functions. Finally, some tests will be performed on simulated data sets and on the real data

that inspired this new algorithm.

2 The classi�cation problem

In a typical supervised statistical learning problem we are interested in understanding the re-

lationship between a response variable Y and an associated m-dimensional predictor vector
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X = (X1, ..., Xm). When the response variable is categorical and takes k di�erent possible val-

ues, this problem is de�ned as a k-class classi�cation problem. In that set up, an interesting

challenge is to use a data set S = {(yi, xi,1, ..., xi,m); i = 1, ..., n} in order to construct a clas-

si�er h. Most of the time, it is assumed that the observations within our data set were drawn

independently from the same unknown and true distribution D, i.e. X ×Y ∼ D. A classi�er

is built to emit a class prediction for any new data point X that belongs in the predictor space

X = X1 × ... × Xm. Therefore a classi�er divides the predictor space X into k disjoint regions

R1, ...Rk, one per class, such that ∪kq=1R1 = X , i.e. h(x) =
∑k

q=1 q1{x ∈ Rq}.

2.1 Classi�cation and Regression Trees

A classi�cation tree [3] is an algorithm that forms regions in the predictor space by recursively

dividing it, more precisely, this procedure performs recursive binary partitioning. Beginning

with the entire predictor space, the algorithm selects the variable to split upon and the location

of the split that minimizes some impurity measure. Then the resulting two regions are each split

into two more regions until some stopping rule is applied. The classi�er will label each region

with one of the k possible classes.

The traditional labelling process goes as follows; let prq = 1
nr

∑
xi∈Rr

1{yi = q}, the pro-

portion of the class q in the region r where nr is the number of observations contained in

region r. Then, the label of the region r is the majority class in that region, i.e. if x ∈ Rr,

hS(x) = argmaxq(prq). For regression trees, the output mean within a leaf node is used as

prediction for observations that belong in that node. The impurity measure function for region

r is de�ned as Qr and can take many forms such as the Gini index, the deviance or the mis-

classi�cation error. For regression trees, the mean squared error is one possible region impurity

measure.

When splitting a region into two new regions Rr and Rt the algorithm will compute the total

impurity of the new regions ; nrQr + ntQt and will pick the split variable Xj and split location

s that minimizes that total impurity. If the predictor Xj is continuous, the possible splits are

of the form Xj ≤ s and Xj > s which usually results in nr − 1 possible splits. For a categorical

predictor having c possible values, we usually consider all of the 2c−1 − 1 possible partitions.

The partitioning continues until a stopping rule is applied. In some cases, the algorithm
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stops whenever every terminal node of the tree contains less than β observations, in other cases

it stops when all observations within a region belong to the same class. To prevent over�tting, a

deep tree is built and then the tree can be pruned. Tree-pruning is a cost-complexity procedure

that relies on considering that each leaf, region, is associated with a cost α. The procedure begins

by collapsing leaves that produce the smallest increase in total impurity and this technique will

collapse leaves as long as the increase in impurity is less than the cost α of the additional leaf.

The α parameter can be determined by cross-validation or with the use of a validation set.

3 Background about missing values

As described in the previous section, a standard assumption in data analysis is that all observa-

tions are distributed according to the true data generation distribution D. We could think of the

missingness itself as a random variable M also of dimension m that is distributed according to

some missingness generating distribution which is a part of D, i.e. X×M×Y ∼ D. Formally,

if M represents the missingness of the vector of predictors X it means that Mj = 1 if Xj is

observed and Mj = 0 if Xj is missing.

Three di�erent dependence relationships between M and X were de�ned by Rubin [16] and

by Little and Rubin [14]. Seaman [18] later untangled the many de�nition inconsistencies of

these relationships. In here, we will rely on simple de�nitions for an easy understanding of

the structure we will consider. First, missing completely at random (MCAR) is the simplest

dependence structure we consider: M ⊥ X.

Second, missing at random (MAR) is much more complicated; it essentially means that

the missingness M is independent of missing observations but can still depend on observed

predictors. More rigorously, we de�ne Xo = {xij ∈ S|xij is observed} as the set of all observed

predictors value, and Xna = {xij ∈ S|xij is missing} as the set of missing predictors value.

We say that data is MAR if the distribution of the missingness is conditionally independent of

missing values given observed values : M ⊥ Xna|Xo. As pointed by Seaman [18], MAR has not

always been used consistently and the de�nition above is the one we settled on for this project.

Finally, if the missingness M depends on missing values M 6⊥⊥ Xna, we say that the data is

missing not at random (MNAR). We will see that the dependence relationship between M and

X has a considerable e�ect on the e�ciency of the many missing values techniques that exist. In
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the next few sections we will establish under which of these relationship our proposed algorithm

outperforms the current techniques.

3.1 Missing values techniques for decision trees

In order to handle missing values, a wide variety of solutions have been proposed for classi�cation

trees. Recent surveys ([17, 6, 9, 21]) de�ne in detail most of the techniques that are currently

used and compare them using various simulated and real data sets. Some techniques are only

suitable for training, some for prediction and �nally, some can deal with missing value in both.

Under the assumption that both the observations obtained for training and the observations that

need to be predicted are distributed according to the same true data generating distribution D,

we would like to use a technique that can handle missing values for both training and prediction.

Predictive value imputation (PVI) methods are popular approaches to deal with missing

value. They aim at estimating the missing value and impute them within both the training

and the test set. The simplest imputation consists of replacing the missing values with the

mean for numerical predictors or the mode for categorical predictors. More advanced prediction

models have also been proposed, such as linear model, k-nearest neighbours or expectation-

maximization (EM). These models use the known predictors to impute values for the missing

ones, therefore one weakness arise if the predictors are independent as these approaches will

have close to no predictive power. Even though Gavankar [9] and Saar-Tsechansky and Provost

[17] raise other problems concerning those techniques, they tend to perform well when there

exist correlation between the predictors. Twala [21] demonstrated using simulated data sets

the great performances of EMMI [13], an expectation-maximization based imputation algorithm

that produces multiple imputations and aggregates the results.

The surrogate variable (SV) approach [3] is a special case of predictive value imputation. As

explained in [11], during the training process, when considering a predictor for a split, only the

observations for which that predictor is not missing are used. After the primary predictor and

split point have been selected, a list of surrogate predictors and split points is constructed. The

�rst surrogate split is the predictor and split point pair that best mimic the split of the training

data achieved by the primary split. Then the second surrogate split is determined among the

leftovers predictors and so on. When splitting the training set during the tree-building procedure

or when sending and observation down the tree during prediction, the surrogate splits are used
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in order if the primary splitting predictor value is missing. Many articles ([7, 6, 17, 21]) showed

that the results are not satisfactory in many cases and Kim and Loh [12] noted the variable

selection biased caused by this approach.

The Separate Class (SC) method replaces the missing value with a new value or a new class

for all observations. For categorical predictors we can simply de�ne missing value as a category

on its own and for continuous predictors any value out of the interval of observed value can be

used. This technique is proved to be the best by Ding and Simono� [6] when there is missing

values in both the training and the test set and when observations are missing not at random

(MNAR). Twala et al. [22] also came up with similar results with a generalization of the separate

class method named Missing Incorporated in Attribute (MIA).

The popular C4.5 implementation [15] has its own way to manage missing data, de�ned

as a distribution-based imputation (DBI). When selecting the predictor to split upon, only

the observations with known values are considered. After choosing the best predictor to split

upon, observations with known values are split as usual. Observations with unknown values are

distributed among the two child nodes proportionately to the split on observed values. Similarly,

for prediction, a new test observation with missing value is split intro branches according to the

portions of training example falling into those branches. The prediction is then based upon a

weighted vote among possible leaves.

Finally, reduced-feature models are suggested by Saar [17] when missing values appear only in

the prediction process. This technique relies on using only know predictors of the new observation

we are trying to classify. A tree is built using only the know predictors of the new observation.

If multiple observations contain di�erent missing pattern then multiple trees are built to classify

the various observations. It shares a great deal of similarities with lazy decision trees [8] as both

models tailor a classi�er to a speci�c observation and uses only known predictors to do so.

4 Branch-Exclusive Splits Trees (BEST)

We now introduce the proposed algorithm, BEST. The purpose of BEST is to utilize the tree

structure itself in order to manage some missing data or some special structure among predictors.

As we explained in section 2.1, a classi�cation tree aims at partitioning the predictor space

and labelling the resulting regions. CART does so by looking through all the possible splits
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and selecting the one that minimizes some prespeci�ed error measure. When using BEST some

predictors are available to split upon only within some regions of the predictor space. These

regions are de�ned according to other predictors values, for example, predictor Xl could be only

available for the partitioning process in the region de�ned by Xj < 0. Therefore if BEST selects

Xj as the splitting variable and if s, the splitting value selected, is such that s ≤ 0, then the

predictor Xl would be available for partitioning in the subspace de�ned by Xj < s. From a tree

perspective, some split variables are exclusive to some branches in the classi�cation tree. By

doing so, predictors with missing values can be handled easily as BEST will partition the data

according to that predictor only in regions where it does not contain missing value. Similarly,

some insight on the data structure can be used to force some variable to be partitioned upon

before others. The result is a tree-structured classi�cation model where certain split variables

are branch-exclusive. All of the construction described below could be used for regression trees

as well.

Therefore, our proposed algorithm di�ers from imputation methods as it only uses known

information to build the classi�er instead of using prediction to replace missing values. It also

di�ers from reduced-feature models as it not only uses the known values but also utilize the fact

that we know some predictors are missing instead of discarding this information. Finally, our

algorithm shares similarities with separate class models as they can both lead to the same tree

structure. On the other hand, BEST identi�es the missing pattern using other predictors rather

than including this information about missingness within the predictor containing missing value.

Doing so, our approach leads to more interpretable results but also the ability to identify the

importance of the missingness itself.

4.1 Motivating Example

Let us now explain which data structure BEST is suitable for by introducing the motivating data

set. It contains information regarding the academic performances of students. The data set was

provided to us by the Univeristy of Toronto and was �rst introduced and analysed by Bailey et

al. [1]. It was later analysed by Beaulac and Rosenthal [2] where the goal was to predict whether

or not a student would complete its program. The predictors represent the number of credits

and grades obtained in all the departments during the �rst two semesters. Understanding the

importance of these predictors was also a question raised by the authors. Obviously a student
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did not obtain grades in many departments as he can only register to a limited number of

courses within a year. In this situation, many grade variables were missing for every student.

BEST handles that problem by considering the averaged grade obtained in a department only for

students who took courses in that department. For example, BEST will force the classi�cation

tree algorithm to split upon the Number of credits predictors to begin. Then, suppose Number

of credits in Statistics is selected and 2 is the split point for the partitioning, BEST will then

allow splits on the Grade in Statistics predictor for the group of students in the region de�ned

by Number of credits in Statistics > 2. Therefore, the Number of credits variables are used to

de�ne the region where the respective Grade variables are available for the partitioning process,

we de�ne Number of credits as gating variables.

If a data set contains missing values on predictor Xj but no predictor can help de�ne the

region with no missing value, we can add a new predictor Xm+1 to the model as our gating

variable. This new predictor is a dummy variable such that Xi,m+1 = 0 if Xi,j is missing and 1 if

not. Doing so, we e�ectively addMj as de�ned in section 3, as a predictor in the model and thus

will be de�ned as follows in the rest of the text. Then, BEST will only consider splitting on Xj

in the subspace de�ned byMj = 1. Multiple dummy variables are added to the model if multiple

predictors contain missing values. Doing so allows us to analyse the individual importance of

the missing patterns M .

4.2 Theoretical intuition

Formally, the loss of a classi�er h is de�ned as :

LD(h) = PD[h(xi) 6= yi], (1)

which is the probability under the true data generating distribution D that the classi�er h mis-

classi�es an observation xi. Since the data generating distribution D is unknown, the empirical

loss computed with the data set S is typically used as an estimator of the true loss :

LS(h) =
|{i ∈ [n] : h(xi) 6= yi}|

n
, (2)
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which is the proportion of misclassi�ed observations in the training set S. Usually a set of

models H, the hypothesis class [19], is selected in advance and most learning algorithms are

trying to identify the classi�er h ∈ H that minimizes the empirical loss LS(h). The true loss can

be decomposed in a manner to observe a bias-complexity tradeo�. Suppose hS = argmin
h∈H

LS(h),

then :

LD(hS) = min
h∈H

LD(h) + (LD(hS)−min
h∈H

LD(h)).

= eapp(H) + eest(hS).

(3)

The approximation error, min
h∈H

LD(h) = eapp, is the minimum achievable loss within the

hypothesis class. The second term , (LD(hS)−min
h∈H

LD(h)) = eest, is the estimation error and is

caused by the use of the empirical loss instead of the true loss when selecting the best classi�er

h. Since the goal is to minimize the total loss a natural tradeo� emerges from equation 3. A

vast, large and complex hypothesis class H leads to a wider choice of functions and therefore

reduces eapp, but the classi�er is more prone to over�tting, which increases eest. Inversely, a

small hypothesis class H reduces eest but increases eapp.

Our proposed algorithm aims at obtaining a better classi�er by restricting the hypothesis

class to a smaller one without increasing the approximation error. Suppose HT is de�ned as the

set of all tree-structured classi�ers. Then, BEST is a new algorithm that aims to �nd the best

classi�er in a new hypothesis classHB that contains all the tree-structured classi�ers that respect

a set of conditions regarding the order that variables can be partitioned upon. Therefore, we

have HB ⊂ HT . Since the complexity of HB is smaller than the complexity of HT the estimation

error of BEST will be smaller. Next, let us take a look at the approximation error : min
h∈HB

LD(h).

When using BEST, we make multiple assumptions on how the partitioning should be processed.

For example, we assume it is better to partition the data using the missing indicator Mj before

partitioning the data using Xj . Doing so, we assume that the best tree-structured classi�er

among all classi�cation tree HT is contained within the set of tree-structured classi�ers that

respect the partition ordering that de�nes HB. In other words, we assume argmin
h∈HT

LD(h) ∈ HB.

Suppose S is a data set, hS(HT ) is the classi�er that minimizes the empirical loss on HT and

hS(HB) is the classi�er that minimizes the empirical loss on HB, then :
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LD(hS(HT )) = min
h∈HT

LD(h) + eest(hS(HT )).

= min
h∈HB

LD(h) + eest(hS(HT )).

≥ min
h∈HB

LD(h) + eest(hS(HB)).

= LD(hS(HB)),

(4)

which implies that the under the assumption we have made we would not only naturally manage

missing values but also reduce the loss. If our assumption argmin
h∈HT

LD(h) ∈ HB is false, we might

increase the loss, and the assumption itself is impossible to verify. Therefore, the behaviour of

the algorithm under multiple scenarios will be tested in section 5 with simulated data.

4.3 Algorithm

Let us now explain how the algorithm functions. BEST takes as input the full data set S, the

tuning parameter β and a list containing the predictor availability structure V . First S is set

as the root node, the �rst set of observations to go through the following steps. The algorithm

veri�es a set of conditions before proceeding with the partitioning process. The �rst condition

(C1) is that the region contains more than β observations, this is the main stopping rule. Then,

the next condition (C2) is that the observations in the region have di�erent labels; this condition

makes sure that the algorithm has a reason to partition the data. Finally, the last condition

(C3) is that at least one of the available predictors takes di�erent values among the observations

in the region; this is to guarantee that the algorithm can actually partition the data.

If at least one condition is false, then the region is de�ned as a leaf node, a label is assigned

to that leaf for prediction purposes and the partitioning process is stopped. Usually the class

that represents the majority in a leaf node is selected as label for that region, but one could

de�ne di�erent label assignment rules.

If all the conditions (C1, C2 and C3) are respected then the partitioning process begins. The

algorithm will go through all the available predictors. For a predictor j, the algorithm will go

through all the possible partition s of the node with respect to the predictor j and will compute

the total impurity of the resulting two regions nr1Qr1 + nr2Qr2 . Any region impurity measure

Q can be used. BEST then selects the predictors j and the split s that minimizes the total
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impurity and create two children regions by splitting the data according to s.

The last step is to update the list of available predictors for the children regions. There exist

multiple possible structures that can contain this information but within the R-language we have

settled on a list V where V [0] represents the set of predictors available for the partitioning process

in the root node and V [i] for i ∈ 1, ...m represent the update for the predictors available on the

children node after the data has been partitioned using the ith predictor. More speci�cally, V [0]

is a vector of size m where V [0][j] = 1 if the jth predictor is available to be split upon in the root

node and V [0][j] = 0 otherwise. Suppose now that the jth predictor is selected as the splitting

predictor. If j is a continuous predictor, V [j][0] contains a threshold value, if the splitting point

s is greater (or less) than the threshold, then the child node containing the observations such

that Xj > s (Xj ≤ s) have their available predictors updated according to the vector contained

in V [j][1] for example. If j is a categorical predictor, then V [j] contains a matrix where the

ith line represents the update needed on the node containing the observations such that Xj = i

after the partitioning. This formatting was easy to implement in R since lists are very �exible,

but other structure could have been used.

Here is a pseudo-code of the proposed algorithm :

Algorithm : BEST(S,β,V )

1. Starting with the entire data set S and the set of available predictors V [0].

2. Check conditions (C1, C2 and C3).

3. if (any condition is false) :

Assign a label to the node and exit.

else if (all conditions are true) :

for (j in all available predictors):

for (s in all possible splits) :

Compute total impurity measure.

Select the variable j and the split s with minimum impurity measure.

Split the node into two children nodes.

Update the available predictors for both children nodes using V [j].

Repeat steps 2 & 3 on the two children nodes.

In addition, the resulting tree can be pruned, and constructed with any splitting rule, any

stopping rule and any label assignment rule. Since one of the goals of this new algorithm is
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to produce accurate but also interpretable models we did not discuss forests so far, but the

proposed tree construction procedure can be used to build any type of forest.

5 Experiments : Simulated data sets

In the following set of simulations, we will compare 6 methods; (1) the Distribution Based

Imputation (DBI) proposed by Quinlan [15], (2) a simple single variable imputation (SVI), either

the mode for a categorical predictor or the mean for a numerical one, (3) a re�ned predictive

value imputation (PVI) using know predictors; EM for numerical predictors and multinomial

logistic regression for categorical one [23], (4) the separate class (SC) approach, (5) the surrogate

variable technique introduced by Breiman et al. [3] and �nally (6) BEST, our proposed approach.

Since the Reduced-Feature Model was the least accurate in every single experiment we have done,

we decided not to include it in the following tables to improve readability. Multiple Imputation

methods were also left out as they actually create forests.

We will simulate data sets with di�erent missing patterns, details on the data structures are

included in the respective subsections. Our experimental procedure is the following; to begin,

we will generate a data set with a missing pattern. Then, we will �t a pruned decision tree using

each of the six methods mentioned in the previous paragraph. This procedure will be repeated 50

times for every training data size we have established. The generated data set will include either

100, 500, 2000, 5000 or 20000 training observations and will contain 500 validation observations

and 2000 testing observations. We will examine the averaged accuracy of the 50 decision trees

produced by the 6 compared missing values management techniques for every experimental set

up. The data is generated according to a small decision tree of depth 4 with 4 di�erent labels.

In every leaf nodes, 70% of observations are assigned to the right labels and 30% are randomly

assigned to other labels.

5.1 MAR : Missingness depends on observed predictors

This �rst experimental set up is meant to test the missing pattern structure BEST was designed

for. In this set up, the missing pattern of a predictor is fully explained by another, fully observed,

predictor. A binary predictor Xi was designated as gating variable for a continuous predictor

Xj . When Xi = 0, Xj is missing, otherwise Xj is generated according to its distribution. The

data is generated according to a decision tree where Xj is only utilized in branches such that
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Xi = 1.

# of obs 100 500 2000 5000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.4118 0.0553 0.5546 0.0322 0.5963 0.0169 0.6179 0.0107 0.6345 0.0092
SVI 0.4099 0.0509 0.5531 0.0330 0.5962 0.0169 0.6179 0.0107 0.6345 0.0092
PVI 0.4025 0.0502 0.5384 0.0299 0.5893 0.0171 0.6138 0.0143 0.6300 0.0096
SC 0.4088 0.0514 0.5539 0.0319 0.5962 0.0171 0.6178 0.0107 0.6345 0.0092

Surrogate 0.3875 0.0636 0.5611 0.0440 0.6032 0.0214 0.6158 0.0216 0.6316 0.0125
BEST 0.4112 0.0651 0.5688 0.0362 0.6302 0.0147 0.6382 0.0145 0.6434 0.0092

Table 1: Mean accuracy and standard deviation when a predictor is MAR given the other
predictors.

This simulation highlights the great behaviour of BEST under an ideal scenario. As we

can see from the mean accuracy columns, every method have similar performances with few

training observations. BEST is outperforming every other missing data handling methods on

data set of size 2000 and 5000 by a large margin. For these intermediate size training set the

data is su�cient for a good �t and the restricted set of models utilized by BEST seems to

contribute towards more accurate classi�ers. Finally, for the large data set simulation, BEST

still outperforms other algorithm but the performance gap has shrunk down a lot.

5.2 MAR : Missingness depends on the response

According to Ding et al. [6], the relationship between the missing pattern and the response

variable has a great e�ect on the results obtained from di�erent missing value treatments. The

relation between the predictor with missing value and the response is also important since the less

correlated they are the more information we relatively gain from analysing the missing pattern.

In this simulation, one of the predictors is randomly selected, let us say Xj , every iteration and

the censoring process is then applied. The censoring process goes as follows; one of the four

response labels is randomly selected, and Xj is missing for all observation with that selected

label. Table 2 contains the results when Xj is continuous and table 3 when Xj is categorical. In

this experiment we have used a dummy variable as the gating variable for the BEST algorithm.
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# of obs 100 500 2000 5000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.4591 0.0699 0.6105 0.0301 0.6649 0.0267 0.6805 0.0216 0.681 0.0176
SVI 0.6289 0.0423 0.713 0.0298 0.7772 0.0144 0.7907 0.0102 0.7972 0.0079
PVI 0.458 0.0732 0.6024 0.0299 0.6573 0.0271 0.6737 0.0262 0.675 0.0222
SC 0.6388 0.0505 0.7324 0.0253 0.7854 0.0104 0.7945 0.0106 0.798 0.0079

Surrogate 0.4303 0.0735 0.6183 0.0249 0.6596 0.0185 0.6697 0.0202 0.6687 0.0184
BEST 0.6555 0.0517 0.7432 0.0236 0.7885 0.0115 0.7927 0.0106 0.7954 0.0102

Table 2: Mean accuracy and standard deviation when a continuous predictor is MAR given the
response.

# of obs 100 500 2000 5000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.4297 0.0608 0.5827 0.0567 0.6229 0.0691 0.646 0.0638 0.6479 0.0625
SVI 0.544 0.1204 0.6866 0.0853 0.7293 0.0738 0.7348 0.0626 0.7345 0.0578
PVI 0.4202 0.0601 0.5731 0.0532 0.6135 0.0655 0.6384 0.0632 0.6459 0.0565
SC 0.6312 0.0603 0.7538 0.0204 0.7897 0.0124 0.7972 0.0082 0.7992 0.0095

Surrogate 0.4154 0.0528 0.5964 0.0466 0.6261 0.052 0.6337 0.0493 0.6375 0.05
BEST 0.6392 0.0594 0.7595 0.0225 0.7934 0.0103 0.7931 0.0109 0.7966 0.0115

Table 3: Mean accuracy and standard deviation when a categorical predictor is MAR given the
response.

In this scenario, the missing pattern is actually a variable with predictive power and therefore,

models like BEST and SC shine as they utilize the fact that there is missing values instead of

trying to impute them. BEST and SC approaches have similar results and their performances

is way higher than any other techniques except SVI which will be discussed next. It seems

like using a variable strictly to represent the missing pattern grants BEST the ability to utilize

this new predictor with fewer observation as BEST outperforms any other techniques in the

small training size simulations. The SC approach seems to have better performances on larger

data sets as it can utilize the missing pattern like BEST without restricting itself to a pre-

speci�ed partitioning order. Finally, it is interesting to notice the high performances of the

simple single value imputation. Our experiments revealed that when the predictor containing

missing value is continuous, replacing missing values with the mean actually behave like the

separate class approach because only the missing values will exactly take the value of the mean.

If the predictor with missing value is categorical, replacing missing values with the mode will

make the observation with missing value undistinguishable from observations that truly belong

to that class which explains why SVI is less competitive in table 3.
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5.3 MNAR : Missingness depends on missing values

Let us now proceed with simulation when the predictors are missing not at random. In the �rst

simulation a continuous predictor, let us say Xj , is randomly selected. Then, a random value t

which serves as threshold within the domain of Xj is selected. Finally, a Bernoulli variable b is

drawn. If b = 0, then if Xj < t it is set missing, otherwise if b = 1 then Xj is missing if its value

is greater than t. In the second one, a categorical prediction, Xj is selected. Then a subset of

categories is randomly selected. Xj is considered missing for observations for which Xj is one

of the selected categories. Since the missingness of Xj depends on the value of Xj itself, this is

considered MNAR.

# of obs 100 500 2000 5000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.4451 0.0791 0.6101 0.0397 0.6603 0.0418 0.659 0.0411 0.6737 0.036
SVI 0.4399 0.0765 0.6044 0.0385 0.6589 0.0357 0.6703 0.0312 0.683 0.0275
PVI 0.4356 0.0784 0.6038 0.0399 0.6503 0.0426 0.6553 0.0429 0.6708 0.0375
SC 0.4479 0.0744 0.6127 0.0316 0.6675 0.0333 0.6714 0.0302 0.6843 0.0275

Surrogate 0.4302 0.069 0.6181 0.0268 0.6491 0.0333 0.6505 0.0298 0.6626 0.0312
BEST 0.4683 0.0683 0.6229 0.034 0.6808 0.0242 0.6746 0.0263 0.6779 0.0279

Table 4: Mean accuracy and standard deviation when a continuous predictor is MNAR.

# of obs 100 500 2000 5000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.4636 0.0712 0.5678 0.0749 0.6103 0.0825 0.6175 0.0768 0.6245 0.0682
SVI 0.4609 0.0675 0.5541 0.0644 0.5852 0.0665 0.6102 0.0714 0.6172 0.0628
PVI 0.4586 0.0665 0.5548 0.0613 0.5914 0.0714 0.6114 0.0732 0.6221 0.066
SC 0.4921 0.0709 0.6396 0.0362 0.6822 0.0143 0.6918 0.0118 0.6995 0.0086

Surrogate 0.4622 0.0688 0.605 0.0519 0.6369 0.046 0.632 0.051 0.6309 0.0535
BEST 0.5108 0.0537 0.659 0.026 0.6845 0.0189 0.6821 0.0294 0.6915 0.0146

Table 5: Mean accuracy and standard deviation when a categorical predictor is MNAR.

Once again we observe that BEST slightly outperforms every other techniques with few

observations. It seems that the more data available the less guidance the decision tree needs.

5.4 Random forests and variable importance

Let us now build a small example where random forests are used to analyse the variable impor-

tance. Random forests are popular in exploratory analysis [20] as the variable importance tools

that were developed for this model became popular.
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As we have seen in the previous experiments, when BEST performs well, so does the SC

approach as both of these techniques do not impute missing values. Here we will quickly discuss

how BEST produces more accurate variable importance computations than the SC approach.

We have created an example where the missing pattern depends on the response, used either

the SC approach or BEST to handle missing values and we have built a forest with those trees.

When the values for a predictor are conditionally missing at random given the response, the

missing pattern is itself a good predictor. We would like a variable importance analysis that

distinguishes between the importance of the predictor with missing value, say Xj , from the

importance of its missing pattern Mj . A random forest of trees built under the SC approach

would fail to distinguish between the e�ect of the observed value for that predictor and the e�ect

of the missing pattern. Since BEST actually uses a variable to de�ne the region with missing

values, either with another predictor or a user-created dummy variable, this gating variable

importance will better represent the predictive power of the missing pattern.

Data X1 X2 X3 X4 X5 X6 X7 X8 M5

Complete 25.74 34.15 20.24 30.33 4.98 78.81 46.43 45.73 -
SC 31.83 43.18 28.17 33.15 155.12 69.53 39.40 35.09 -

BEST 30.31 40.89 26.10 33.02 3.09 64.56 45.04 35.72 145.84

Table 6: Variable Importance table : Computed using the GINI decrease importance

We have built a random forest using the complete data set and computed the GINI decrease

importance. Then we have randomly selected one of the four labels, and the predictor X5,

a predictor of low importance according to the GINI decreases under the complete data set,

is rendered missing depending on the value of the response. Since the SC approach uses the

predictor containing missing value to identify observations containing missing value then it

identi�es X5 as the most important predictor. Using BEST, we can easily observe that the

missing pattern, M5 is the important predictor and that X5 is actually of low importance when

observed as it should be according to the complete data variable importance. We do believe

that this is a bene�t from using BEST over the SC approach.

5.5 Simulations takeaways

Throughout various simulation experiments we have been able to highlight the success of BEST

under various scenarios. It seems that forcing the algorithm to consider the missing pattern
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before the variable with missing values is useful with small to medium data size. As the data

size grows larger, the imputations are more precise which helps imputation-based techniques.

Regarding the SC approach, since it does not impute the missing values, it can create the same

partitioning that BEST creates but the SC approach does not need to �rst isolate the missing

value in order to partition upon the variable containing missing values which can sometimes be

valuable on large data sets.

Our simulation revealed that BEST su�ers from a weakness when the gating variable is of

low importance. This can happen if only a small proportion of data is missing, if the missing

pattern is simply non-informative or in some cases when data is MCAR. In that case, BEST will

never partition upon the gating variable and thus will never partition upon the branch-exclusive

variable which will almost surely reduce the accuracy of the resulting tree. This weakness

is intrinsic to the algorithm as it is caused by the greedy nature of decision trees. Since it

can only see the reduction in impurity gained with a single partition, a classic decision tree

approach cannot perceive the accuracy gained by the combination of two successive partitioning.

Considering pairs of consecutive splits would be a great improvement and would negate this

limitation but would drastically increase the run time of the algorithm.

6 Experiments : grades data set

The data set mentioned in section 4.1 was analysed using BEST. Once again, the accuracy of the

proposed algorithm is compared to other techniques that handle missing values. To begin, we

predict if a student completes its program using its �rst year of courses and results. The data set

contains 38842 observations. Our set of predictors consists of the number of credits attempted

in all the departments and the average grade obtained in those respective departments. The

number of credits is a numerical variable that serves as the gating variable for the respective

average grade. If the number of credits attempted in a department is greater than 0 for every

observation in a region then BEST acquires access to the grade variable. We have randomly

sampled training sets of di�erent sizes and used all the remaining observations to assess the

accuracy. This process was repeated 50 times and we have averaged the results. We did not

include the single value imputation because we expect this technique to produce the same result

as the SC approach since all predictors are numerical. We did not include the imputation

produced by the mice package [23] as the package was incapable of handling the data set.
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# of obs 5000 10000 15000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.7223 0.0035 0.7336 0.0038 0.7385 0.0092 0.7402 0.0095
SC 0.7307 0.0066 0.7387 0.0044 0.7427 0.0036 0.7462 0.0033

Surrogate 0.7291 0.0053 0.7301 0.0046 0.7311 0.0034 0.7300 0.0032
BEST 0.7333 0.0062 0.7424 0.0045 0.7457 0.0037 0.7479 0.0033

Table 7: Mean accuracy and standard deviation when a categorical predictor is MNAR.

In table 7, we observe that BEST produces the most accurate decision trees for that data

set for all training data sizes. This data set also provides a good example for the increased

interpretability of the BEST classi�er as we previously discussed. For the SC approach we have

replaced missing grades by a value outside of the domain, 101. Frequently in this experiment,

the tree constructed under the SC approach partitions upon the grade in departments before

the number of credits. For example, if Grades in Mathematics is selected and 60 is selected

as the split point, then the partitioning is of the following form; students with grades below 60

in Mathematics are partitioned from students with grades above 60 and students with missing

grades. What interpretable information is to be understood from that partition ? It is hard to

say. Does this partition implies students with no experience in Mathematics behave similarly to

students with good results in Mathematics ? BEST achieves similar or higher accuracy while

keeping the partitions logical and interpretable. BEST will begin by partitioning students who

attempted at least 1 credit in Mathematics from those who did not. Then, among students who

attempted at least 1 credit in Mathematics, BEST will partition them according to their grades,

which leads to a more interpretable sequence of partitions. If interpretability is considered a

strength of decision trees, then BEST is better than the SC approach at preserving this strength.

Another reason why we might prefer using BEST in this analysis is its ability to rightfully

identify the variable importance. As we discussed in section 4.1, the researchers were interested

in the importance of the predictors. Therefore BEST is an improvement as it truly identi�es the

importance of the gating variables, the number of credits, as we have shown in section 5.4. In

this case we were able to distinguish the importance of the number of credits in a department

of the importance of the grade obtained in that department.

In the second analysis, we will look at the 26488 students who completed their program.

Using the same set of explanatory variables, we will try to predict the department they majored

18



in :

# of obs 5000 10000 15000 20000
Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D.
DBI 0.3581 0.0055 0.376 0.0043 0.3871 0.0039 0.3936 0.0057
SC 0.3992 0.0079 0.4172 0.0069 0.4262 0.0047 0.4332 0.0044

Surrogate 0.3639 0.0121 0.3661 0.011 0.3723 0.012 0.3742 0.012
BEST 0.3952 0.0074 0.4164 0.0051 0.4265 0.0043 0.4319 0.0043

Table 8: Mean accuracy and standard deviation when a categorical predictor is MNAR.

Here we observe closer results from the two best performing algorithm. BEST and SC have

almost indistinguishable performances and are the top performers. Even though the results are

a lot closer between BEST and SC, our proposed algorithm still produces trees that are more

interpretable and could be used to produce a non-biased variable importance analysis.

7 Conclusion

We have constructed a modi�ed tree-building algorithm that lets the users decide the regions

of the predictor space where variables are available for the data partitioning process. We have

focused on using this feature to manage missing values. BEST has the elegant property of

analysing a variable only when values are known without assuming any missingness dependence

structure. It produces highly interpretable trees and achieves higher accuracy than most missing

value handling techniques in cases we have identi�ed using simulated data sets. Even though

BEST shares similarities with the separate class technique, BEST leads to a more accurate

variable importance analysis and produces more interpretable and intuitive trees.

BEST su�ers from a weakness when the gating variable has no predictive power. In those

cases, the algorithm will never choose to split upon the gating variable and thus will never be

allowed to use the branch-exclusive variable. This problem can lead to a decrease in accuracy

in some simple cases where the data is MCAR. Fortunately, as we have previously discussed,

there already exist multiple techniques to handle data MCAR and we can count on cross-

validation in order to help us select the best missing data handling technique. Nonetheless, in

the simulated experiments we have performed, results were mostly positive as BEST outperforms

other techniques when data is MAR and MNAR and when the data size is not too large.
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The results produced by BEST were also satisfactory when the algorithm was used on the real

motivating grades data set. We were able to achieve higher accuracy than with most other tech-

niques while obtaining a more interpretable classi�er. Since variable importance was a concern

in the grades data set analysis, BEST was an improvement as it answers that research ques-

tion by providing a more reliable variable importance analysis than the separate class approach

previously used [2].
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